RAMCHANDRAN MUTHUKUMAR, Ph.D Student,

Department of Computer Science, Johns Hopkins University rmuthuk1@jhu.edu | (+1) 443-541-1140 | Website | LinkedIn

RESEARCH INTERESTS

Understanding how models perform under different circumstances is essential. My work explores two important questions in evaluating a learnt model: (1) how well it generalizes to new data, and (2) how robust it is to corrupt data. Despite overparameterization, state-of-the-art models often exhibit implicit low-dimensionality and parsimony. Leveraging parsimonious structure in models/data (eg. sparsity, low rank) often leads to tighter theoretical guarantees and efficient algorithms.

EDUCATION & RESEARCH EXPERIENCE

Johns Hopkins University

JULY 2019 - PRESENT

Ph.D Student, Department of Computer Science

Advisors: Jeremias Sulam

Cornell University

JULY 2017 - MAY 2019

Research Assistant, Department of Operations Research and Information Engineering

Advisors: Madeleine Udell, Drew Kouri (Sandia National Lab.)

Birla Institute of Technology and Science Pilani, Goa Campus

JULY 2013 - MAY 2018

Master of Science in Mathematics, Bachelor of Engineering in Computer Science

JOURNAL PUBLICATIONS

- R. Muthukumar, J. Sulam. Adversarial robustness of sparse local Lipschitz predictors. SIAM Journal on Mathematics of Data Science (SIMODS), 2023
 - Input-specific pruning of neural networks helps provides tighter estimation of local Lipschtz constant.
 - Provides tighter robustness certificates leveraging the sparse activation patterns of ReLu feedforward networks.
 - Improved robust generalization bound that scale favourably with depth.
- R. Muthukumar, D. P. Kouri, and M. Udell. Randomized sketching algorithms for low-memory dynamic optimization. SIAM Journal on Optimization (SIOPT), 31(2):1242–1275, 2021
 - Builds on cutting edge randomized sketching algorithms to perform low memory PDE optimization
 - Provably convergent optimization algorithms based on Inexact Trust Region methods.

CONFERENCE PUBLICATIONS

- R. Muthukumar, J.Sulam. Sparsity-aware generalization theory for deep neural networks. In Proceedings of the 34th Annual Conference on Learning Theory (COLT), 2023
 - Novel generalization bounds that account for sparsity in intermediate layer activations of deep neural networks.
 - Demonstrates fundamental trade-offs between sparsity and generalization.
 - Data-dependent priors enable meaningful bounds on generalization errors in over-parameterized scenarios.
- J. Sulam, R. Muthukumar, R. Arora. Adversarial Robustness of Supervised Sparse Coding. In Advances in Neural Information Processing Systems (NeurIPS), 2020
 - Demonstrates bounds on robust generalization error for supervised dictionary learning
 - Provides tighter deterministic robustness certificates leveraging sparse structure.

AWARDS AND FELLOWSHIPS

SUMMER 2021 | MINDS Summer Fellowship in Data Science SPRING 2022 | MINDS Spring Fellowship in Data Science

TALKS AND POSTERS

NOVEMBER 2023	Sparsity-aware generalization theory for deep neural networks, Poster @ Conference on the Mathematical Theory of Deep Neural Networks (DEEPMATH), 2023
JULY 2023	Sparsity-aware generalization theory for deep neural networks, Poster @ 36th Annual Conference on Learning Theory (COLT), 2023
June 2023	Sparsity-aware generalization theory for deep neural networks, Poster @ Computational Complexity of Statistical Problems Workshop
January 2023	Adversarial Robustness of sparse local Lipschitz predictors, Poster @ Third Workshop on Seeking Low Dimensionality in Deep Neural Networks 2023
NOVEMBER 2022	Adversarial Robustness of sparse local Lipschitz predictors, Poster @ Conference on the Mathematical Theory of Deep Neural Networks (DEEPMATH), 2022
JULY 2022	Adversarial Robustness of sparse local Lipschitz predictors, Poster @ Sparsity in Neural Networks Workshop 2022
MARCH 2022	Adversarial Robustness of sparse local Lipschitz predictors, Invited Talk @ MINDS Retreat 2022
DECEMBER 2020	Adversarial Robustness of Supervised Sparse Coding, Poster @ Conference on Neural Information Processing Systems (NeurIPS), 2020
FEBRUARY 2020	Randomized Sketching Algorithms for Low Memory Dynamic Optimization, Invited Student Guest speaker @ CSL Student Conference, UIUC
JULY 2019	Sketching Algorithms for Approximate Gradients @ JuliaCon 2019
June 2016	Presolving Algorithms for Optimization @ JuliaCon 2016

EXPERIENCE

- PRESOLVE ROUTINES FOR LP AND SDP @ Google Summer of Code 2016 Mentor - Dr. Madeleine Udell
 - Implemented fast Presolving algorithms to speed up LP optimization in scientific computing language Julia
 - Benchmarked against existing solvers for speed and efficiency

TEACHING ASSISTANTSHIP

Fall 2021 @ JHU | EN.580.709 : Sparse Representations in Computer Vision and Machine Learning Fall 2020 @ JHU | EN.580.709 : Sparse Representations in Computer Vision and Machine Learning F464 : Machine Learning

REFERENCES

Jeremias Sulam, Rene Vidal, Madeleine Udell, Drew Kouri